It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
High-temperature superconductivity in the Fe-based materials emerges when the antiferromagnetism of the parent compounds is suppressed by either doping or pressure. Closely connected to the antiferromagnetic state are entangled orbital, lattice, and nematic degrees of freedom, and one of the major goals in this field has been to determine the hierarchy of these interactions. Here we present the direct measurements and the calculations of the in-plane uniform magnetic susceptibility anisotropy of BaFe2As2, which help in determining the above hierarchy. The magnetization measurements are made possible by utilizing a simple method for applying a large symmetry-breaking strain, based on differential thermal expansion. In strong contrast to the large resistivity anisotropy above the antiferromagnetic transition at TN, the anisotropy of the in-plane magnetic susceptibility develops largely below TN. Our results imply that lattice and orbital degrees of freedom play a subdominant role in these materials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Institute for Solid State Physics, Karlsruhe Institute of Technology, 76021, Germany
2 Institut für Theoretische Physik III, Ruhr-Universität Bochum, Bochum, Germany
3 Institute for Solid State Physics, Karlsruhe Institute of Technology, 76021, Germany; Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology, Karlsruhe, Germany
4 Institut für Theoretische Physik III, Ruhr-Universität Bochum, Bochum, Germany; National University of Science and Technology “MISiS”, Moscow, Russia