Content area
Full Text
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Main ships’ maintenance care consists of periodical (every 4-5 years) hull treatment which includes blasting works; blasting consists in projecting a high-pressure jet of abrasive matter (typically water or grit) onto a surface to remove adherences or rust traces. The object of this task is to maintain hull integrity, guarantee navigational safety conditions, and assure that the surface offers little resistance to the water in order to reduce fuel consumption. That object can be achieved by grit blasting [1] or ultra-high pressure water jetting [2]. In most cases these techniques are applied using manual or semiautomated procedures with the help of robotized devices [3]. In either case defects are detected by means of human operators; this is therefore a subjective task and hence vulnerable to cumulative operator fatigue and highly dependent on the experience of the personnel performing the task. Figure 1 shows a view of ship’s hulls under repair at NAVANTIA’s shipyards.
[figures omitted; refer to PDF]
From an operational point of view, there are two working modes: full blasting and spot blasting. Full blasting consists of blasting the entire hull of the ship, while spot blasting consists of blasting numerous isolated areas where corrosion has been observed. Spot blasting is the most demanded operation due to cost saving reasons. This second working mode demands very precise information about position, size, and shape of damaged portions of the hull to make robotic devices [3–5] to achieve maximum efficiency.
This paper proposes a computer vision algorithm which equips a machine vision system (see Figure 2), capable for precisely detecting defects in ship hulls which is simple enough to be implemented in such a way as to meet the real-time requirements for the application.
[figure omitted; refer to PDF]Because of the textured appearance of the hull’s surface under inspection (see Figures 1(c) and 1(d)), we have used the...
|
|
|
|
---|