You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Hydrothermal carbonization (HTC) has been proposed as an alternative method to pyrolysis for producing C-rich amendments for soil C sequestration. However, the use of hydrochar (HC) as soil amendment is still controversial due to the limited information on the potential benefits and trade-offs that may follow its application into soil. This study investigated the effects of HC starting from maize silage on plant growth in a 2-year controlled experiment on poplar for bioenergy and evaluated HC stability in soil by periodic soil respiration and isotopic (δ13C) measurements. HC application caused a substantial and significant increase in plant biomass after one and two years after planting, and no evident signs of plant diseases were evident. Isotopic analysis on soil and CO2 efflux showed that slightly less than half of the C applied was re-emitted as CO2 within 12 months. On the contrary, considering that the difference in the amount of N fixed in wood biomass in treated and not-treated poplars was 16.6 ± 4.8 g N m-2 and that the soil N stocks after one year since application did not significantly change, we estimated that approximately 85% of the N applied with HC could have been potentially lost as leachate or volatilized into the atmosphere as N2O, in response to nitrification/denitrification processes in the soil. Thus, the permanence, additionality and leakage of C sequestration strategy using HC are deeply discussed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Biometeorology (IBIMET), National Research Council (CNR), Firenze, Italy
2 Institute of Biometeorology (IBIMET), National Research Council (CNR), Firenze, Italy; Department of Agrifood, Environmental and Animal Science, University of Udine, Udine, Italy
3 Research and Innovation Centre, Edmund Mach Foundation (FEM), S. Michele all ‘Adige (TN), Italy
4 Foxlab Joint CNR-FEM Initiative, San Michele all ‘Adige, Trento, Italy
5 Carbon Solutions CS Deutschland GmbH, CarbonSolutions Deutschland GmbH, Teltow, Germany
6 Institute of Biometeorology (IBIMET), National Research Council (CNR), Firenze, Italy; Foxlab Joint CNR-FEM Initiative, San Michele all ‘Adige, Trento, Italy; IMéRA - Institut d’études avancées de l'Universitè Aix-Marseille, Marseille, France