Full text

Turn on search term navigation

© 2017 Niu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Extracellular vesicles (EVs) are membrane-bound vesicles released by cells and act as media for transfer of proteins, small RNAs and mRNAs to distant sites. They can be isolated by different methods. However, the biological activities of the purified EVs have seldom been studied. In this study, we compared the use of ultracentrifugation (UC), ultra-filtration (UF), polymer-based precipitation (PBP), and PBP with size-based purification (PBP+SP) for isolation of EVs from human endometrial cells and mouse uterine luminal fluid (ULF). Electron microscopy revealed that the diameters of the isolated EVs were similar among the tested methods. UF recovered the highest number of EVs followed by PBP, while UC and PBP+SP were significantly less efficient (P<0.05). Based on the number of EVs-to-protein ratios, PBP had the least protein contamination, significantly better than the other methods (P<0.05). All the isolated EVs expressed exosome-enriched proteins CD63, TSG101 and HSP70. Incubation of the trophoblast JEG-3 cells with an equal amount of the fluorescence-labelled EVs isolated by the studied methods showed that many of the PBP-EVs treated cells were fluorescence positive but only a few cells were labelled in the UC- and UF-EVs treated groups. Moreover, the PBP-EVs could transfer significantly more miRNA to the recipient cells than the other 3 methods (P<0.05). The PBP method could isolate EVs from mouse ULF; the diameter of the isolated EVs was 62±19 nm and expressed CD63, TSG101 and HSP70 proteins. In conclusion, PBP could best preserve the activities of the isolated EVs among the 4 methods studied and was able to isolate EVs from a small volume of sample. The simple setup and low equipment demands makes PBP the most suitable method for rapid EV assessment and isolation of EVs in clinical and basic research settings.

Details

Title
Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrial cell line
Author
Niu, Ziru; Pang, Ronald T K; Liu, Weimin; Li, Qian; Cheng, Ranran; Yeung, William S B
First page
e0186534
Section
Research Article
Publication year
2017
Publication date
Oct 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1950407660
Copyright
© 2017 Niu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.