Full Text

Turn on search term navigation

© 2017, Bandaru et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ras proteins are highly conserved signaling molecules that exhibit regulated, nucleotide-dependent switching between active and inactive states. The high conservation of Ras requires mechanistic explanation, especially given the general mutational tolerance of proteins. Here, we use deep mutational scanning, biochemical analysis and molecular simulations to understand constraints on Ras sequence. Ras exhibits global sensitivity to mutation when regulated by a GTPase activating protein and a nucleotide exchange factor. Removing the regulators shifts the distribution of mutational effects to be largely neutral, and reveals hotspots of activating mutations in residues that restrain Ras dynamics and promote the inactive state. Evolutionary analysis, combined with structural and mutational data, argue that Ras has co-evolved with its regulators in the vertebrate lineage. Overall, our results show that sequence conservation in Ras depends strongly on the biochemical network in which it operates, providing a framework for understanding the origin of global selection pressures on proteins.

DOI: http://dx.doi.org/10.7554/eLife.27810.001

Details

Title
Deconstruction of the Ras switching cycle through saturation mutagenesis
Author
Bandaru Pradeep; Shah, Neel H; Bhattacharyya Moitrayee; Barton, John P; Kondo Yasushi; Cofsky, Joshua C; Gee, Christine L; Chakraborty, Arup K; Kortemme Tanja; Ranganathan Rama; Kuriyan, John
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2017
Publication date
2017
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1950545809
Copyright
© 2017, Bandaru et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.