Full Text

Turn on search term navigation

Copyright © 2016, Borzenkov et al.; licensee Beilstein-Institut. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Summary

Inkjet printing of spherical gold nanoparticles is widely applied in the fabrication of analytical and diagnostics tools. These methods could be extended to non-spherical gold nanoparticles that can efficiently release heat locally when irradiated in the near infrared (NIR) wavelength region, due to localized surface plasmon resonance (LSPR). However, this promising application requires the ability to maintain high efficiency and tunability of the NIR LSPR of the printed nanoparticles. In this study stable inks containing PEGylated gold nanostars (GNS) were fabricated and successfully inkjet-printed onto differently coated paper substrates with different porosity and permeability. A pronounced photothermal effect was observed under NIR excitation of LSPR of the printed GNS patterns even at low laser intensities. It was found that beside the direct role of the laser intensity, this effect depends appreciably on the printing parameters, such as drop density (δ, drops/mm2) and number of printed layers, and, critically, on the permeability of the coated paper substrates. These results will promote the development of GNS-based printed platforms for local photothermal therapy.

Details

Title
Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability
Author
Borzenkov Mykola; Määttänen Anni; Ihalainen Petri; Collini Maddalena; Cabrini Elisa; Dacarro Giacomo; Pallavicini Piersandro; Chirico Giuseppe
University/institution
U.S. National Institutes of Health/National Library of Medicine
Pages
1480-1485
Publication year
2016
Publication date
2016
Publisher
Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
e-ISSN
21904286
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1953285631
Copyright
Copyright © 2016, Borzenkov et al.; licensee Beilstein-Institut. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.