Abstract

Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.

Details

Title
In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting
Author
Chen, Xiaoyu 1   VIAFID ORCID Logo  ; Janssen, Josephine M 1 ; Liu, Jin 1 ; Maggio, Ignazio 1 ; Anke E J ‘t Jong 1 ; Mikkers, Harald MM 1 ; Manuel A F V Gonçalves 1   VIAFID ORCID Logo 

 Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands 
Pages
1-15
Publication year
2017
Publication date
Sep 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1953962501
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.