It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The African grass Andropogon gayanus Kunth. is invading Australian savannas, altering their ecological and biogeochemical function. To assess impacts on nitrogen (N) cycling, we quantified litter decomposition and N dynamics of grass litter in native grass and A. gayanus invaded savanna using destructive in situ grass litter harvests and litterbag incubations (soil surface and aerial position). Only 30% of the A. gayanus in situ litter decomposed, compared to 61% of the native grass litter, due to the former being largely comprised of highly resistant A. gayanus stem. In contrast to the stem, A. gayanus leaf decomposition was approximately 3- and 2-times higher than the dominant native grass, Alloteropsis semilata at the surface and aerial position, respectively. Lower initial lignin concentrations, and higher consumption by termites, accounted for the greater surface decomposition rate of A. gayanus. N flux estimates suggest the N release of A. gayanus litter is insufficient to compensate for increased N uptake and N loss via fire in invaded plots. Annually burnt invaded savanna may lose up to 8.2% of the upper soil N pool over a decade. Without additional inputs via biological N fixation, A. gayanus invasion is likely to diminish the N capital of Australia’s frequently burnt savannas.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Charles Darwin University, Darwin, Northern Territory, Australia
2 University of Western Australia, Perth, Western Australia, Australia
3 The University of Queensland, Brisbane, Queensland, Australia