It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cellulases are industrially important enzymes with a potential to convert cellulose into fermentable sugars. Novel bacterial isolate Paenibacillus sp. CKS1 was tested for cellulase activity and the optimal conditions for carboxymethyl cellulase (CMCase) production were determined. Maximum CMCase activity was obtained in the third passage of the bacterial culture after 3 days of incubation at 30°C. Cellobiose and yeast extract was the optimal source of carbon and nitrogen for induction of CMCase activity. In addition, with initial pH 7 of the medium and 40 ml of working volume in 500 ml culture flasks with shaking at 150 rpm, the maximum CMCase activity in a crude culture supernatant reached value of 0.532±0.006 U/ml. For crude CMCase, optimal temperature was 50°C and optimal pH 4.8, respectively. HPLC analysis confirmed the bacterium is capable to hydrolise CMC to glucose and other soluble sugars.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer






