It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Commercial macroporous poly(4-vinylpyridine-co-divinylbenzene) [P4VPD], known as REILLEX-425 was characterized by mercury porosimetry, nitrogen physisorption, Fourier transformed infrared (FTIR) spectroscopy and elemental analysis. Sorption rates of P4VPD for Cu(II), Co(II) and Cr(VI) ions were determined in static non-competitive experiments, at room temperature (298 K). Rapid sorption was observed, especially for Co(II), with half time, t1/2, of 1.5 min and high experimental maximal capacity, Qmax, of 3.08 mmol g-1. Four kinetic models (pseudo-first and pseudo-second order model, intraparticle diffusion and Boyd model) were used for analyzing metal sorption by P4VPD. Metal ions sorption is well represented by the pseudo-second-order model, with definite influence of pore and film diffusion on sorption rates.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer