It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Thioredoxin reductase (TrxR) as a selenium (Se)-containing antioxidase plays key role in regulating intracellular redox status. Selenocystine (SeC) a natural available Se-containing amino acid showed novel anticancer potential through triggering oxidative damage-mediated apoptosis. However, whether TrxR-mediated oxidative damage was involved in SeC-induced apoptosis in human glioma cells has not been elucidated yet. Herein, SeC-induced human glioma cell apoptosis was detected in vitro, accompanied by PARP cleavage, caspases activation and DNA fragmentation. Mechanically, SeC caused mitochondrial dysfunction and imbalance of Bcl-2 family expression. SeC treatment also triggered ROS-mediated DNA damage and disturbed the MAPKs and AKT pathways. However, inhibition of ROS overproduction effectively attenuated SeC-induced oxidative damage and apoptosis, and normalized the expression of MAPKs and AKT pathways, indicating the significance of ROS in SeC-induced apoptosis. Importantly, U251 human glioma xenograft growth in nude mice was significantly inhibited in vivo. Further investigation revealed that SeC-induced oxidative damage was achieved by TrxR1-targeted inhibition in vitro and in vivo. Our findings validated the potential of SeC to inhibit human glioma growth by oxidative damage-mediated apoptosis through triggering TrxR1-targeted inhibition.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, China
2 Department of Neurosurgery, Huxi Hospital, Jining Medical University, Shanxian, Shandong, China
3 Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon, Korea
4 Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, China; Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, Shandong, China