It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Drought, rising temperatures, and expanding human populations are increasing water demands. Many countries are extending potable water supplies by irrigating crops with wastewater. Unfortunately, wastewater contains biologically active, long-lived pharmaceuticals, even after treatment. Run-off from farms and wastewater treatment plant overflows contribute high concentrations of pharmaceuticals to the environment. This study assessed the effects of common pharmaceuticals on a cosmopolitan saprophagous insect, Megaselia scalaris (Diptera: Phoridae). Larvae were reared on artificial diets spiked with contaminants of emerging concern (CECs) at environmentally relevant concentrations. Female flies showed no oviposition preference for treated or untreated diets. Larvae exposed to caffeine in diets showed increased mortality, and larvae fed antibiotics and hormones showed signs of slowed development, especially in females. The normal sex ratio observed in M. scalaris from control diets was affected by exposure to caffeine and pharmaceutical mixture treatments. There was an overall effect of treatment on the flies’ microbial communities; notably, caffeine fed insects displayed higher microbial variability. Eight bacterial families accounted for approximately 95% of the total microbes in diet and insects. Our results suggest that CECs at environmentally relevant concentrations can affect the biology and microbial communities of an insect of ecological and medical importance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Entomology, University of California, Riverside, CA, USA; Graduate Program in Environmental Toxicology, University of California, Riverside, CA, USA
2 Department of Entomology, University of California, Riverside, CA, USA; Graduate Program in Microbiology, University of California, Riverside, CA, USA
3 Department of Entomology, University of California, Riverside, CA, USA
4 Graduate Program in Environmental Toxicology, University of California, Riverside, CA, USA; Department of Environmental Chemistry, University of California, Riverside, CA, USA