It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Genetic divergence by environment is a process whereby selection causes the formation of gene flow barriers between populations adapting to contrasting environments and is often considered to be the onset of speciation. Nevertheless, the extent to which genetic differentiation by environment on small spatial scales can be detected by means of neutral markers is still subject to debate. Previous research on the perennial herb Primula veris has shown that plants from grassland and forest habitats showed pronounced differences in phenology and flower morphology, suggesting limited gene flow between habitats. To test this hypothesis, we sampled 33 populations of P. veris consisting of forest and grassland patches and used clustering techniques and network analyses to identify sets of populations that are more connected to each other than to other sets of populations and estimated the timing of divergence. Our results showed that spatial genetic variation had a significantly modular structure and consisted of four well-defined modules that almost perfectly coincided with habitat features. Genetic divergence was estimated to have occurred about 114 generations ago, coinciding with historic major changes in the landscape. Overall, these results illustrate how populations adapting to different environments become structured genetically within landscapes on small spatial scales.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Division of Plant Ecology and Systematics, Biology Department, University of Leuven, Leuven, Belgium
2 Research Institute for Forest and Nature, Geraardsbergen, Belgium
3 Department of Evolutionary Biology and Environmental Studies. University of Zurich, Zurich, Switzerland