It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Oxidative stress plays an important role in the pathogenesis of virus infection and antioxidants are becoming promising candidates as therapeutic agents. This study is designed to investigate the effect of total flavonoids of Spatholobus suberectus Dunn (TFSD) on oxidative stress in mice induced by porcine circovirus type 2 (PCV2) infection. The PCV2 infection leads to significant decrease in thymus and spleen indices, elevation of xanthine oxidase (XOD) and myeloperoxidase (MPO) activities, reduction in GSH level and GSH to GSSG ratio and decline of superoxide dismutase (SOD) activity, indicating the formation of immunosuppression and oxidative stress. TFSD treatment recovered the alteration of viscera index, antioxidant content and activities of oxidative-associated enzymes to a level similar to control. Our findings suggested that PCV2 induced immunosuppression and oxidative stress in mice and TFSD might be able to protect animals from virus infection via regulation of immune function and inhibition of oxidative stress.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Animal Science and Technological College, Guangxi University, Guangxi, People’s Republic of China
2 Department of Occupational Health, School of Medicine, Guangxi University, Guangxi, People’s Republic of China; Guangxi Key laboratory of Metabolic Diseases Research, Guilin 181st Hospital, Guangxi, People’s Republic of China