It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Gender dysphoria (GD) is characterized by an incongruence between the gender assigned at birth and the gender with which one identifies. The biological mechanisms of GD are unclear. While common genetic variants are associated with GD, positive findings have not always been replicated. To explore the role of rare variants in GD susceptibility within the Han Chinese population, whole-genome sequencing of 9 Han female-to-male transsexuals (FtMs) and whole-exome sequencing of 4 Han male-to-female transsexuals (MtFs) were analyzed using a pathway burden analysis in which variants are first collapsed at the gene level and then by Gene Ontology terms. Novel nonsynonymous variants in ion transport genes were significantly enriched in FtMs (P- value, 2.41E-10; Fold enrichment, 2.8) and MtFs (P- value, 1.04E-04; Fold enrichment, 2.3). Gene burden analysis comparing 13 GD cases and 100 controls implicated RYR3, with three heterozygous damaging mutations in unrelated FtMs and zero in controls (P = 0.001). Importantly, protein structure modeling of the RYR3 mutations indicated that the R1518H mutation made a large structural change in the RYR3 protein. Overall, our results provide information about the genetic basis of GD.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Medical Genetics, Second Military Medical University, Shanghai, China
2 Department of Plastic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
3 Center of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China