It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This work investigates the synthesis, chemical composition, defect structures and associated dielectric properties of (Mg2+, Ta5+) co-doped rutile TiO2 polycrystalline ceramics with nominal compositions of (Mg2+1/3Ta5+2/3)xTi1−xO2. Colossal permittivity (>7000) with a low dielectric loss (e.g. 0.002 at 1 kHz) across a broad frequency/temperature range can be achieved at x = 0.5% after careful optimization of process conditions. Both experimental and theoretical evidence indicates such a colossal permittivity and low dielectric loss intrinsically originate from the intragrain polarization that links to the electron-pinned \[{\bf{M}}{{\bf{g}}}_{{\bf{T}}{\bf{i}}}^{{\prime}{\prime} }+{{\bf{V}}}_{{\bf{O}}}^{\bullet \bullet }+{\bf{2}}{\bf{T}}{{\bf{a}}}_{{\bf{T}}{\bf{i}}}^{\bullet }+{\bf{2}}{\bf{T}}{{\bf{i}}}_{{\bf{T}}{\bf{i}}}^{\prime}\] defect clusters with a specific configuration, different from the defect cluster form previously reported in tri-/pent-valent ion co-doped rutile TiO2. This work extends the research on colossal permittivity and defect formation to bi-/penta-valent ion co-doped rutile TiO2 and elucidates a likely defect cluster model for this system. We therefore believe these results will benefit further development of colossal permittivity materials and advance the understanding of defect chemistry in solids.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Research School of Chemistry, the Australian National University, Canberra, Australia
2 School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Canberra, Australia
3 Centre for Advanced Microscopy, The Australian National University, Canberra, Australia
4 Fenghua Advanced Technology Holding Co. Ltd., Zhaoqing, Guangdong, China
5 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Centre for Dielectric Research, Xi’an Jiaotong University, Xi’an, China
6 CAS Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China