It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Surgical reconstruction of cartilaginous defects remains a major challenge. In the current study, we aimed to identify an imaging strategy for the development of patient-specific constructs that aid in the reconstruction of nasal deformities. Magnetic Resonance Imaging (MRI) was performed on a human cadaver head to find the optimal MRI sequence for nasal cartilage. This sequence was subsequently used on a volunteer. Images of both were assessed by three independent researchers to determine measurement error and total segmentation time. Three dimensionally (3D) reconstructed alar cartilage was then additively manufactured. Validity was assessed by comparing manually segmented MR images to the gold standard (micro-CT). Manual segmentation allowed delineation of the nasal cartilages. Inter- and intra-observer agreement was acceptable in the cadaver (coefficient of variation 4.6–12.5%), but less in the volunteer (coefficient of variation 0.6–21.9%). Segmentation times did not differ between observers (cadaver P = 0.36; volunteer P = 0.6). The lateral crus of the alar cartilage was consistently identified by all observers, whereas part of the medial crus was consistently missed. This study suggests that MRI is a feasible imaging modality for the development of 3D alar constructs for patient-specific reconstruction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Centre, Amsterdam, 1081HV, the Netherlands, Amsterdam Movement Sciences, Amsterdam, The Netherlands
2 Department of Oral and Maxillofacial Surgery/Oral Pathology – 3D InnovationLab, VU University Medical Center, Amsterdam, The Netherlands
3 Department of Physics and Medical Technology, VU University Medical Centre, Amsterdam, The Netherlands
4 Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Centre, Amsterdam, 1081HV, the Netherlands, Amsterdam Movement Sciences, Amsterdam, The Netherlands; Department of Plastic, Reconstructive & Hand Surgery/Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands; Association of Dutch Burn Centres, Beverwijk, The Netherlands