Abstract

Breast cancer is a heterogeneous disease comprising a variety of entities with various genetic backgrounds. Estrogen receptor-positive, human epidermal growth factor receptor 2-negative tumors typically have a favorable outcome; however, some patients eventually relapse, which suggests some heterogeneity within this category. In the present study, we used proteomics and miRNA profiling techniques to characterize a set of 102 either estrogen receptor-positive (ER+)/progesterone receptor-positive (PR+) or triple-negative formalin-fixed, paraffin-embedded breast tumors. Protein expression-based probabilistic graphical models and flux balance analyses revealed that some ER+/PR+ samples had a protein expression profile similar to that of triple-negative samples and had a clinical outcome similar to those with triple-negative disease. This probabilistic graphical model-based classification had prognostic value in patients with luminal A breast cancer. This prognostic information was independent of that provided by standard genomic tests for breast cancer, such as MammaPrint, OncoType Dx and the 8-gene Score.

Details

Title
Functional proteomics outlines the complexity of breast cancer molecular subtypes
Author
Gámez-Pozo, Angelo 1   VIAFID ORCID Logo  ; Trilla-Fuertes, Lucía 2 ; Berges-Soria, Julia 1 ; Selevsek, Nathalie 3 ; López-Vacas, Rocío 1 ; Díaz-Almirón, Mariana 4 ; Nanni, Paolo 3   VIAFID ORCID Logo  ; Arevalillo, Jorge M 5 ; Navarro, Hilario 5 ; Grossmann, Jonas 3 ; Moreno, Francisco Gayá 4 ; Rubén Gómez Rioja 6 ; Prado-Vázquez, Guillermo 1 ; Zapater-Moros, Andrea 1 ; Main, Paloma 7 ; Feliú, Jaime 8 ; Purificación Martínez del Prado 9 ; Zamora, Pilar 8 ; Ciruelos, Eva 10 ; Espinosa, Enrique 8 ; Juan Ángel Fresno Vara 1 

 Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain 
 Biomedica Molecular Medicine SL, Madrid, Spain 
 Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland 
 Department of Statistics, Biostatistics Unit, La Paz University Hospital - IdiPAZ, Madrid, Spain 
 Operational Research and Numerical Analysis, National Distance Education University (UNED), Madrid, Spain 
 Medical Laboratory Service, La Paz University Hospital Health Research Institute-IdiPAZ, Madrid, Spain 
 Department of Statistics and Operations Research, Faculty of Mathematics, Complutense University of Madrid, Madrid, Spain 
 Medical Oncology Service, La Paz University Hospital-IdiPAZ, Madrid, Spain 
 Medical Oncology Service, Basurto Hospital, Bilbao, Spain 
10  Medical Oncology Service, Hospital 12 de Octubre (i+12) Health Research Institute, Madrid, Spain 
Pages
1-13
Publication year
2017
Publication date
Aug 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1957751989
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.