It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Anthracycline-based chemotherapy is associated with dose-dependent, irreversible damage to the heart. Childhood cancer survivors with hypertension after anthracycline exposure are at increased risk of cardiotoxicity, leading to the hypothesis that genetic susceptibility loci for hypertension may serve as predictors for development of late cardiotoxicity. Therefore, we determined the association between 12 GWAS-identified hypertension-susceptibility loci and cardiotoxicity in a cohort of long-term childhood cancer survivors (N = 108) who received anthracyclines and were screened for cardiac function via echocardiograms. Hypertension-susceptibility alleles of PLCE1:rs9327264 and ATP2B1:rs17249754 were significantly associated with cardiotoxicity risk conferring a protective effect with a 64% (95% CI: 0.18–0.76, P = 0.0068) and 74% (95% CI: 0.07–0.96, P = 0.040) reduction in risk, respectively. In RNAseq experiments of human induced pluripotent stem cell (iPSC) derived cardiomyocytes treated with doxorubicin, both PLCE1 and ATP2B1 displayed anthracycline-dependent gene expression profiles. In silico functional assessment further supported this relationship - rs9327264 in PLCE1 (P = 0.0080) and ATP2B1 expression (P = 0.0079) were both significantly associated with daunorubicin IC50 values in a panel of lymphoblastoid cell lines. Our findings demonstrate that the hypertension-susceptibility variants in PLCE1 and ATP2B1 confer a protective effect on risk of developing anthracycline-related cardiotoxicity, and functional analyses suggest that these genes are influenced by exposure to anthracyclines.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
2 Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
3 Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, Texas, USA
4 Section of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
5 Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA