It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
By using our dual-modality system enabling simultaneous real-time ultrasound (US) and photoacoustic (PA) imaging of human peripheral joints, we explored the potential contribution of PA imaging modality to rheumatology clinic. By performing PA imaging at a single laser wavelength, the spatially distributed hemoglobin content reflecting the hyperemia in synovial tissue in metacarpophalangeal (MCP) joints of 16 patients were imaged, and compared to the results from 16 healthy controls. In addition, by performing PA imaging at two laser wavelengths, the spatially distributed hemoglobin oxygenation reflecting the hypoxia in inflammatory joints of 10 patients were imaged, and compared to the results from 10 healthy controls. The statistical analyses of the PA imaging results demonstrated significant differences (p < 0.001) in quantified hemoglobin content and oxygenation between the unequivocally arthritic joints and the normal joints. Increased hyperemia and increased hypoxia, two important physiological biomarkers of synovitis reflecting the increased metabolic demand and the relatively inadequate oxygen delivery in affected synovium, can both be objectively and non-invasively evaluated by PA imaging. The proposed dual-modality system has the potential of providing additional diagnostic information over the traditional US imaging approaches and introducing novel imaging biomarkers for diagnosis and treatment evaluation of inflammatory arthritis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
2 Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
3 Department of Electronic Science and Engineering, Nanjing University, Nanjing, China
4 Division of Rheumatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
5 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA