Abstract

In this paper, a highly efficient core-shell structure of TiO2(B)/anatase photocatalyst with CoP cocatalyst has been synthesized via hydrothermal processes and a mechanical milling method. The designed core-shell TiO2(B)/anatase photocatalysts exhibit excellent performance by compared with pure TiO2(B) and anatase phase. With the participation of CoP particles, there is drastically enhanced  photocatalytic activity of TiO2(B)/anatase, and the H2-production rate can be up to 7400 μmol·g−1, which is about 3.2 times higher than TiO2(B)/anatase photocatalyst. The improved activity is attributed to the contribution of the well-matched core-shell structure and cooperative effect of CoP cocatalyst. The photogenerated holes of anatase can migrate more promptly to the adjacent TiO2(B) core than the photogenerated electrons, which result in an accumulation of electrons in the anatase, and CoP nanoparticles can contribute significantly to transferring electrons from the surface of TiO2(A). It was found that the efficient separation of electron-hole pairs greatly improved the photocatalytic hydrogen evolution in water under UV light irradiation.

Details

Title
Highly Performance Core-Shell TiO2(B)/anatase Homojunction Nanobelts with Active Cobalt phosphide Cocatalyst for Hydrogen Production
Author
Yang, Guang 1 ; Ding, Hao 1 ; Feng, Jiejie 1 ; Hao, Qiang 1 ; Sun, Sijia 1 ; Ao, Weihua 1 ; Chen, Daimei 1 

 Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing, P.R. China 
Pages
1-9
Publication year
2017
Publication date
Nov 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1961026322
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.