It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent experiments have shown that visual cognition blends current input with that from the recent past to guide ongoing decision making. This serial dependence appears to exploit the temporal autocorrelation normally present in visual scenes to promote perceptual stability. While this benefit has been assumed, evidence that serial dependence directly alters stimulus perception has been limited. In the present study, we parametrically vary the delay between stimulus and response in a spatial delayed response task to explore the trajectory of serial dependence from the moment of perception into post-perceptual visual working memory. We find that behavioral responses made immediately after viewing a stimulus show evidence of adaptation, but not attractive serial dependence. Only as the memory period lengthens is a blending of past and present information apparent in behavior, reaching its maximum with a delay of six seconds. These results dovetail with other recent findings to bolster the interpretation that serial dependence is a phenomenon of mnemonic rather than perceptual processes. However, even while this pattern of effects in group-averaged data has now been found consistently, we show that the relative strengths of adaptation and serial dependence vary widely across individuals. Finally, we demonstrate that when leading mathematical models of working memory are adjusted to account for these trial-history effects, their fit to behavioral data is substantially improved.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 UC Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, USA
2 UC Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, USA; UC Berkeley, Department of Psychology, Berkeley, CA, USA