Full Text

Turn on search term navigation

© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Introduction

Cockroach allergen exposure elicits cockroach sensitization and poses an increased risk for asthma. However, the major components in cockroach allergen and the mechanisms underlying the induction of cockroach allergen‐induced allergy and asthma remain largely elusive. We sought to examine the role of cockroach‐associated glycan in regulating human basophil function.

Methods

N‐linked glycans from naturally purified cockroach allergen Bla g 2 were characterized by MALDI‐TOF mass spectrometry. Binding of cockroach allergen to serum IgE from cockroach allergic subjects was determined by solid‐phase binding immunoassays. Role of cockroach associated glycan in histamine release and IL‐4 production from human basophils was examined. Expression of C‐type lectin receptors (CLRs) and their role in mediating glycan‐uptake in the basophils was also investigated.

Results

MALDI‐TOF mass spectrometric analysis of N‐glycan from Bla g 2 showed complex hybrid‐types of glycans that terminated with mannose, galactose, and/or N‐acetyl glucosamine (GlcNAc). Deglycosylated Bla g 2 showed reduced binding to IgE and was less capable of inducing histamine release from human basophils. In contrast, N‐glycan derived from Bla g 2 significantly inhibited histamine release and IL‐4 production from basophils passively sensitized with serum from cockroach allergic subjects. An analysis of CLRs revealed the expression of DC‐SIGN and DCIR, but not MRC1 and dectin‐1, in human basophils. Neutralizing antibody to DCIR, but not DC‐SIGN, significantly inhibited Bla g 2 uptake by human basophils. A dose‐dependent bindings of cockroach allergen to DCIR was also observed.

Conclusions

These observations indicate a previously unrecognized role for cockroach allergen‐associated glycans in allergen‐induced immune reactions, and DCIR may play a role in mediating the regulation of glycan on basophil function.

Details

Title
N‐glycan in cockroach allergen regulates human basophil function
Author
Do, Danh C 1 ; Yang, Shuang 2 ; Xu, Yao 3 ; Hamilton, Robert G 1 ; Schroeder, John T 1 ; Gao, Peisong 1 

 Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 
 Department of Pathology, Clinical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 
 Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China 
Pages
386-399
Section
Original Research
Publication year
2017
Publication date
Dec 2017
Publisher
John Wiley & Sons, Inc.
e-ISSN
20504527
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1965066746
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.