Content area
This paper presents a primal-dual interior-point algorithm for solving general constrained nonlinear programming problems. The inequality constraints are incorporated into the objective function by means of a logarithmic barrier function. Also, satisfaction of the equality constraints is enforced through the use of an adaptive quadratic penalty function. The penalty parameter is determined using a strategy that ensures a descent property for a merit function. Global convergence of the algorithm is achieved through the monotonic decrease of a merit function. Finally, extensive computational results show that the algorithm can solve large and difficult problems in an efficient and robust way.