Full Text

Turn on search term navigation

Copyright © 2014, Shestov et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational model of glycolysis and an integrated analysis using metabolic control analysis (MCA), metabolomics data, and statistical simulations. We identified and confirmed a novel mode of regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, negative flux control was found and confirmed for several steps thought to be rate-limiting in glycolysis. Together, these findings enumerate the biochemical determinants of the WE and suggest strategies for identifying the contexts in which agents that target glycolysis might be most effective.

DOI: http://dx.doi.org/10.7554/eLife.03342.001

Details

Title
Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
Author
Shestov, Alexander A; Liu, Xiaojing; Zheng, Ser; Cluntun, Ahmad A; Hung, Yin P; Huang, Lei; Kim, Dongsung; Le, Anne; Yellen, Gary; Albeck, John G; Locasale, Jason W
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2014
Publication date
2014
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1966581983
Copyright
Copyright © 2014, Shestov et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.