It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent expansions of cloud computing have been growing at a phenomenal rate. Security and privacy issues have become a considerable issue while the applications of big data are growing dramatically fast in cloud computing. However, there exists a contradiction between ensuring a high performance and achieving a high-level security and privacy protection due to the restrictions of the computing resources, based on the findings of the literature review. This study focuses on this contradiction issue and intend to develop an approach of effectuating the cloud system design for a high-level security and privacy protection while acquiring a high performance. The work consists of four research tasks that support the solution to the proposed problem. They are (i) designing a Optimal Fully Homomorphic Encryption (O-FHE) mechanism that can both avoid noise and execute efficiently; (ii) designing a privacy-preserving data encryption strategy while considering efficiency; (iii) developing an approach of the data analytics manager system for in-memory big data analytics; (iv) designing an adaptive energy-aware data allocation approach for heterogeneous memory and creating an efficient data allocation approach for cloud-based heterogeneous memory. The research implements experimental evaluations to examine the performance of the proposed approaches. The main contributions of this study address three aspects. First, this study has proposed an O-FHE method that is different from all approaches proposed by the prior researches. Second, this study addresses the contradiction between the data security and system performance and presents a privacy-preserving strategy for secure data transmissions in cloud systems. Finally, this study attempts to increase the computation efficiency by enhancing the functioning of hardware, more specifically, using heterogeneous memory and in-memory data analytics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer