Full Text

Turn on search term navigation

© 2014 Havard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Adjustment for the differing risk profiles of patients is essential to the use of administrative hospital data for epidemiological research. Smoking is an important factor to include in such adjustments, but the accuracy of the diagnostic codes denoting smoking in hospital records is unknown. The aims of this study were to measure the validity of current smoking and ever smoked status identified from diagnoses in hospital records using a range of algorithms, relative to self-reported smoking status; and to examine whether the misclassification of smoking identified through hospital data is differential or non-differential with respect to common exposures and outcomes. Data from the baseline questionnaire of the 45 and Up Study, completed by 267,153 residents of New South Wales (NSW), Australia, aged 45 years and older, were linked to the NSW Admitted Patient Data Collection. Patients who had been admitted to hospital for an overnight stay between 1 July 2005 and the date of completion of the questionnaire (1 January 2006 to 2 March 2009) were included. Smokers were identified by applying a range of algorithms to hospital admission histories, and compared against self-reported smoking in the questionnaire (‘gold standard’). Sensitivities for current smoking ranged from 59% to 84%, while specificities were 94% to 98%. Sensitivities for ever smoked ranged from 45% to 74% and specificities were 93% to 97%. For the majority of algorithms, sensitivities and/or specificities differed significantly according to principal diagnosis, number of comorbidities, socioeconomic status, residential remoteness, Indigenous status, 28 day readmission and 365 day mortality. The identification of smoking through diagnoses in hospital data results in differential misclassification. Risk adjustment based on smoking identified from these data will yield potentially misleading results. Systematic capture of information about smoking in hospital records using a mandatory item would increase the utility of administrative data for epidemiological research.

Details

Title
Risk Adjustment for Smoking Identified through Tobacco Use Diagnoses in Hospital Data: A Validation Study
Author
Havard, Alys; Jorm, Louisa R; Lujic, Sanja
First page
e95029
Section
Research Article
Publication year
2014
Publication date
Apr 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1977747331
Copyright
© 2014 Havard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.