Full text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We are moving into the age of ‘Big Data’ in biomedical research and bioinformatics. This trend could be encapsulated in this simple formula: D = S * F, where the volume of data generated (D) increases in both dimensions: the number of samples (S) and the number of sample features (F). Frequently, a typical omics classification includes redundant and irrelevant features (e.g. genes or proteins) that can result in long computation times; decrease of the model performance and the selection of suboptimal features (genes and proteins) after the classification/regression step. Multiple algorithms and reviews has been published to describe all the existing methods for feature selection, their strengths and weakness. However, the selection of the correct FS algorithm and strategy constitutes an enormous challenge. Despite the number and diversity of algorithms available, the proper choice of an approach for facing a specific problem often falls in a ‘grey zone’. In this study, we select a subset of FS methods to develop an efficient workflow and an R package for bioinformatics machine learning problems. We cover relevant issues concerning FS, ranging from domain’s problems to algorithm solutions and computational tools. Finally, we use seven different proteomics and gene expression datasets to evaluate the workflow and guide the FS process.

Details

Title
Accurate and fast feature selection workflow for high-dimensional omics data
Author
Perez-Riverol, Yasset; Kuhn, Max; Vizcaíno, Juan Antonio; Marc-Phillip Hitz; Audain, Enrique
First page
e0189875
Section
Research Article
Publication year
2017
Publication date
Dec 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1979770609
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.