You may have access to the free features available through My Research. You can save searches, save documents, create alerts and more. Please log in through your library or institution to check if you have access.
You may have access to different export options including Google Drive and Microsoft OneDrive and citation management tools like RefWorks and EasyBib. Try logging in through your library or institution to get access to these tools.
REFERENCESBecker, C. G., & Zamudio, K. R. (2011). Tropical amphibian populations experience higher disease risk in natural habitats. Proceedings of the National Academy of Sciences, 108, 9893–9898. https://doi.org/10.1073/pnas.1014497108Berger, L., Hyatt, A. D., Speare, R., & Longcore, J. E. (2005). Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 68, 51–63. https://doi.org/10.3354/dao068051Bletz, M. C., Rebollar, E. A., & Harris, R. N. (2015). Differential efficiency among DNA extraction methods influences detection of the amphibian pathogen Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 113, 1–8. https://doi.org/10.3354/dao02822Blooi, M., Pasmans, F., Longcore, J. E., derSluijs, A. S., Vercammen, F., & Martel, A. (2013). Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. Journal of Clinical Microbiology, 51, 4173–4177. https://doi.org/10.1128/JCM.02313-13Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T., & Hyatt, A. D. (2004). Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms, 60, 141–148. https://doi.org/10.3354/dao060141Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. New York, NY: Springer Verlag.Carey, C., Bruzgul, J. E., Livo, L. J., Walling, M. L., Kuehl, K. A., Dixon, B. F., … Rogers, K. B. (2006). Experimental exposures of boreal toads (Bufo boreas) to a pathenogenic chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth, 3, 5–21. https://doi.org/10.1007/s10393-005-0006-4Chestnut, T., Anderson, C., Popa, R., Blaustein, A. R., Voytek, M., Olson, D. H., & Kirshtein, J. (2014). Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America. PLoS One, 9, e106790. https://doi.org/10.1371/journal.pone.0106790Clare, F., Daniel, O., Garner, T., & Fisher, M. (2016). Assessing the ability of swab data to determine the true burden of infection for the amphibian pathogen Batrachochytrium dendrobatidis. EcoHealth, 13, 360–367. https://doi.org/10.1007/s10393-016-1114-zDaszak, P., Cunningham, A. A., & Hyatt, A. D. (2003). Infectious disease and amphibian population declines. Diversity and Distributions, 9, 141–150. https://doi.org/10.1046/j.1472-4642.2003.00016.xGoldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P. F., Murphy, M. A., … Laramie, M. (2016). Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution, 7, 1299–1307. https://doi.org/10.1111/2041-210X.12595Grant, E. H. C., Muths, E. L., Katz, R. A., Canessa, S., Adams, M. J., Ballard, J. R., … White, C. L. (2016). Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies. Reston, VA: U.S. Geological Survey. https://doi.org/10.3133/ofr20151233Hollings, T., Jones, M., Mooney, N., & McCallum, H. (2014). Trophic cascades following the disease-induced decline of an apex predator, the Tasmanian devil. Conservation Biology, 28, 63–75. https://doi.org/10.1111/cobi.12152Hunter, M. E., Dorazio, R. M., Butterfield, J. S. S., Meigs-Friend, G., Nico, L. G., & Ferrante, J. A. (2017). Detection limits of quantitative and digital PCR assays and their influence in presence–absence surveys of environmental DNA. Molecular Ecology Resources, 17, 221–229. https://doi.org/10.1111/men.2017.17.issue-2Hyatt, A. D., Boyle, D. G., Olsen, V., Boyle, D. B., Berger, L., Obendorf, D., … Hines, H. (2007). Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 73, 175–192. https://doi.org/10.3354/dao073175Jachowski, D. S., Dobony, C. A., Coleman, L. S., Ford, W. M., Britzke, E. R., & Rodrigue, J. L. (2014). Disease and community structure: White-nose syndrome alters spatial and temporal niche partitioning in sympatric bat species. Diversity and Distributions, 20, 1002–1015. https://doi.org/10.1111/ddi.2014.20.issue-9Kerby, J. L., Schieffer, A., Brown, J. R., & Whitfield, S. (2012). Utilization of fast qPCR techniques to detect the amphibian chytrid fungus: A cheaper and more efficient alternative method. Methods in Ecology and Evolution, 1, 5.Kirshtein, J. D., Anderson, C. W., Wood, J. S., Longcore, J. E., & Voytek, M. A. (2007). Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water. Diseases of Aquatic Organisms, 77, 11–15. https://doi.org/10.3354/dao01831Kolby, J. E., Ramirez, S. D., Berger, L., Griffin, D. W., Jocque, M., & Skerratt, L. F. (2015). Presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) in rainwater suggests aerial dispersal is possible. Aerobiologia, 31, 411–419. https://doi.org/10.1007/s10453-015-9374-6Kosch, T. A., & Summers, K. (2013). Techniques for minimizing the effects of PCR inhibitors in the chytridiomycosis assay. Molecular Ecology Resources, 13, 230–236. https://doi.org/10.1111/1755-0998.12041Laake, J. L. (2013). RMark: An R interface for analysis of capture-recapture data with MARK. AFSC Processed Rep 2013-01, 25p., Alaska Fish. Sci. Cent.,NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.Lachish, S., Gopalaswamy, A. M., Knowles, S. C. L., & Sheldon, B. C. (2012). Site-occupancy modelling as a novel framework for assessing test sensitivity and estimating wildlife disease prevalence from imperfect diagnostic tests. Methods in Ecology and Evolution, 3, 339–348. https://doi.org/10.1111/j.2041-210X.2011.00156.xLahoz-Monfort, J. J., Guillera-Arroita, G., & Tingley, R. (2016). Statistical approaches to account for false-positive errors in environmental DNA samples. Molecular Ecology Resources, 16, 673–685. https://doi.org/10.1111/1755-0998.12486Langwig, K. E., Voyles, J., Wilber, M. Q., Frick, W. F., Murray, K. A., Bolker, B. M., … Kilpatrick, A. M. (2015). Context-dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment, 13, 195–202. https://doi.org/10.1890/140241Longo, A. V., Rodriguez, D., daSilva Leite, D., Toledo, L. F., Mendoza Almeralla, C., Burrowes, P. A., & Zamudio, K. R. (2013). ITS1 copy number varies among Batrachochytrium dendrobatidis strains: Implications for qPCR estimates of infection intensity from field-collected amphibian skin swabs. PLoS One, 8, e59499. https://doi.org/10.1371/journal.pone.0059499MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2MacKenzie, D. I., Nichols, J. D., Seamans, M. E., & Gutiérrez, R. J. (2009). Modeling species occurrence dynamics with multiple states and imperfect detection. Ecology, 90, 823–835. https://doi.org/10.1890/08-0141.1Martel, A., derSluijs, A. S., Blooi, M., Bert, W., Ducatelle, R., Fisher, M. C., … Pasmans, F. (2013). Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proceedings of the National Academy of Sciences, 110, 15325–15329. https://doi.org/10.1073/pnas.1307356110McClintock, B. T., Nichols, J. D., Bailey, L. L., MacKenzie, D. I., Kendall, W. L., & Franklin, A. B. (2010). Seeking a second opinion: Uncertainty in disease ecology. Ecology Letters, 13, 659–674. https://doi.org/10.1111/j.1461-0248.2010.01472.xMcKee, A. M., Spear, S. F., & Pierson, T. W. (2015). The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biological Conservation, 183, 70–76. https://doi.org/10.1016/j.biocon.2014.11.031Miller, D. A., Nichols, J. D., McClintock, B. T., Grant, E. H. C., Bailey, L. L., & Weir, L. A. (2011). Improving occupancy estimation when two types of observational error occur: Non-detection and species misidentification. Ecology, 92, 1422–1428. https://doi.org/10.1890/10-1396.1Miller, D. A. W., Talley, B. L., Lips, K. R., & Campbell Grant, E. H. (2012). Estimating patterns and drivers of infection prevalence and intensity when detection is imperfect and sampling error occurs. Methods in Ecology and Evolution, 3, 850–859. https://doi.org/10.1111/j.2041-210X.2012.00216.xMosher, B. A., Bailey, L. L., Hubbard, B. A., & Huyvaert, K. P. (2017). Inferential biases linked to unobservable states in complex occupancy models. Ecography, 40, 1–8.Muths, E., Bailey, L. L., & Watry, M. K. (2014). Animal reintroductions: An innovative assessment of survival. Biological Conservation, 172, 200–208. https://doi.org/10.1016/j.biocon.2014.02.034Nichols, J. D., Bailey, L. L., Talancy, N. W., Campbell Grant, E. H., Gilbert, A. T., Annand, E. M., … Hines, J. E. (2008). Multi-scale occupancy estimation and modelling using multiple detection methods. Journal of Applied Ecology, 45, 1321–1329. https://doi.org/10.1111/jpe.2008.45.issue-5Olson, D. H., Aanensen, D. M., Ronnenberg, K. L., Powell, C. I., Walker, S. F., Bielby, J., … Garner, T. W. J. (2013). Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One, 8, e56802. https://doi.org/10.1371/journal.pone.0056802Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences, 70, 1123–1130. https://doi.org/10.1139/cjfas-2013-0047Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2014). Factors influencing detection of eDNA from a stream-dwelling amphibian. Molecular Ecology Resources, 14, 109–116. https://doi.org/10.1111/men.2013.14.issue-1Piotrowski, J. S., Annis, S. L., & Longcore, J. E. (2004). Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia, 96, 9–15. https://doi.org/10.1080/15572536.2005.11832990R Development Core Team (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Savage, A. E., Sredl, M. J., & Zamudio, K. R. (2011). Disease dynamics vary spatially and temporally in a North American amphibian. Biological Conservation, 144, 1910–1915. https://doi.org/10.1016/j.biocon.2011.03.018Scheele, B. C., Hunter, D. A., Grogan, L. F., Berger, L. E. E., Kolby, J. E., McFadden, M. S., … Driscoll, D. A. (2014). Interventions for Reducing Extinction Risk in chytridiomycosis-threatened amphibians. Conservation Biology, 28, 1195–1205.Schmidt, B. R., Kéry, M., Ursenbacher, S., Hyman, O. J., & Collins, J. P. (2013). Site occupancy models in the analysis of environmental DNA presence/absence surveys: A case study of an emerging amphibian pathogen. Methods in Ecology and Evolution, 4, 646–653. https://doi.org/10.1111/mee3.2013.4.issue-7Shin, J., Bataille, A., Kosch, T. A., & Waldman, B. (2014). Swabbing often fails to detect amphibian chytridiomycosis under conditions of low infection load. PLoS One, 9, e111091. https://doi.org/10.1371/journal.pone.0111091Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, A. D., … Kenyon, N. (2007). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth, 4, 125–134. https://doi.org/10.1007/s10393-007-0093-5Smith, K. F., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20, 1349–1357. https://doi.org/10.1111/cbi.2006.20.issue-5Stockwell, M. P., Garnham, J. I., Bower, D. S., Clulow, J., & Mahony, M. J. (2016). Low disease-causing threshold in a frog species susceptible to chytridiomycosis. FEMS Microbiology Letters, 363, fnw111. https://doi.org/10.1093/femsle/fnw111Thomsen, P. F., Kielgast, J., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., … Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21, 2565–2573. https://doi.org/10.1111/j.1365-294X.2011.05418.xVenesky, M. D., Liu, X., Sauer, E. L., & Rohr, J. R. (2014). Linking manipulative experiments to field data to test the dilution effect. Journal of Animal Ecology, 83, 557–565. https://doi.org/10.1111/jane.2014.83.issue-3Venesky, M. D., Raffel, T. R., McMahon, T. A., & Rohr, J. R. (2014). Confronting inconsistencies in the amphibian-chytridiomycosis system: Implications for disease management. Biological Reviews, 89, 477–483. https://doi.org/10.1111/brv.2014.89.issue-2Voyles, J., Kilpatrick, A. M., Collins, J. P., Fisher, M. C., Frick, W. F., McCallum, H., … Rosenblum, E. B. (2014). Moving beyond too little, too late: Managing emerging infectious diseases in wild populations requires international policy and partnerships. EcoHealth, 2014, 1–4.Vredenburg, V. T., Knapp, R. A., Tunstall, T. S., & Briggs, C. J. (2010). Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the National Academy of Sciences, 107, 9689–9694. https://doi.org/10.1073/pnas.0914111107Walker, S. F., Baldi Salas, M., Jenkins, D., Garner, T. W. J., Cunningham, A. A., Hyatt, A. D., … Fisher, M. C. (2007). Environmental detection of Batrachochytrium dendrobatidis in a temperate climate. Diseases of Aquatic Organisms, 77, 105. https://doi.org/10.3354/dao01850WhilesJr, M. R., Hall, R. O., Dodds, W. K., Verburg, P., Huryn, A. D., Pringle, C. M., … Connelly, S. (2013). Disease-driven amphibian declines alter ecosystem processes in a tropical stream. Ecosystems, 16, 146–157. https://doi.org/10.1007/s10021-012-9602-7White, G. C., & Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study, 46, S120–S139. https://doi.org/10.1080/00063659909477239Yap, T. A., Koo, M. S., Ambrose, R. F., Wake, D. B., & Vredenburg, V. T. (2015). Averting a North American biodiversity crisis. Science, 349, 481–482. https://doi.org/10.1126/science.aab1052
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
Accurate pathogen detection is essential for developing management strategies to address emerging infectious diseases, an increasingly prominent threat to wildlife. Sampling for free-living pathogens outside of their hosts has benefits for inference and study efficiency, but is still uncommon. We used a laboratory experiment to evaluate the influences of pathogen concentration, water type, and qPCR inhibitors on the detection and quantification of Batrachochytrium dendrobatidis (Bd) using water filtration. We compared results pre- and post-inhibitor removal, and assessed inferential differences when single versus multiple samples were collected across space or time. We found that qPCR inhibition influenced both Bd detection and quantification in natural water samples, resulting in biased inferences about Bd occurrence and abundance. Biases in occurrence could be mitigated by collecting multiple samples in space or time, but biases in Bd quantification were persistent. Differences in Bd concentration resulted in variation in detection probability, indicating that occupancy modeling could be used to explore factors influencing heterogeneity in Bd abundance among samples, sites, or over time. Our work will influence the design of studies involving amphibian disease dynamics and studies utilizing environmental DNA (eDNA) to understand species distributions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
Details
Title
Design- and model-based recommendations for detecting and quantifying an amphibian pathogen in environmental samples
Author
Mosher, Brittany A 1
; Huyvaert, Kathryn P 1
; Chestnut, Tara 2 ; Kerby, Jacob L 3 ; Madison, Joseph D 3 ; Bailey, Larissa L 1
1 Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
2 US Geological Survey, Oregon Water Science Center, Portland, OR, USA
3 Department of Biology, University of South Dakota, Vermillion, SD, USA