Full Text

Turn on search term navigation

© 2018 Zou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Analyzing massive user-generated microblogs is very crucial in many fields, attracting many researchers to study. However, it is very challenging to process such noisy and short microblogs. Most prior works only use texts to identify sentiment polarity and assume that microblogs are independent and identically distributed, which ignore microblogs are networked data. Therefore, their performance is not usually satisfactory. Inspired by two sociological theories (sentimental consistency and emotional contagion), in this paper, we propose a new method combining social context and topic context to analyze microblog sentiment. In particular, different from previous work using direct user relations, we introduce structure similarity context into social contexts and propose a method to measure structure similarity. In addition, we also introduce topic context to model the semantic relations between microblogs. Social context and topic context are combined by the Laplacian matrix of the graph built by these contexts and Laplacian regularization are added into the microblog sentiment analysis model. Experimental results on two real Twitter datasets demonstrate that our proposed model can outperform baseline methods consistently and significantly.

Details

Title
Microblog sentiment analysis using social and topic context
Author
Zou, Xiaomei; Yang, Jing; Zhang, Jianpei
First page
e0191163
Section
Research Article
Publication year
2018
Publication date
Feb 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1993598332
Copyright
© 2018 Zou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.