It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Martensitic stainless steel parts used in carbonaceous atmosphere at high temperature are subject to corrosion which results in a large amount of lost energy and high repair and maintenance costs. This work therefore proposes a model for surface development and corrosion mechanism as a solution to reduce corrosion costs. The morphology, phase, and corrosion behavior of steel are investigated using GIXRD, XANES, and EIS. The results show formation of nanograin–boundary networks in the protective layer of martensitic stainless steel. This Cr2O3–Cr7C3 nanograin mixture on the FeCr2O4 layer causes ion transport which is the main reason for the corrosion reaction during carburizing of the steel. The results reveal the rate determining steps in the corrosion mechanism during carburizing of steel. These steps are the diffusion of uncharged active gases in the stagnant–gas layer over the steel surface followed by the conversion of C into C4− and O into O2− at the gas–oxide interface simultaneously with the migration of Cr3+ from the metal-oxide interface to the gas-oxide interface. It is proposed that previous research on Al2O3 coatings may be the solution to producing effective coatings that overcome the corrosion challenges discussed in this work.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
2 Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
3 Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima, Thailand