It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In early 2014, strong westerly wind bursts (WWBs) and high heat content in the equatorial Pacific favored development of a major El Niño. However, significant coupling between the Pacific Ocean and atmosphere failed to take hold during boreal summer of 2014 such that only borderline El Niño conditions were evident by the end of the year. Observational analysis suggests that warm sea surface temperatures (SSTs) in the Indian Ocean in 2014 weakened westerly wind anomalies in the Pacific and may have helped to arrest the development of the El Niño. We test this hypothesis using an ensemble of coupled numerical experiments in which observed Indian Ocean SST anomalies in 2014–15 are prescribed but the Pacific Ocean-atmosphere system is free to evolve. Results confirm that warm SST anomalies in the Indian Ocean created conditions that would have favored a weakening of El Niño by suppressing the Bjerknes feedback in boreal summer of 2014. This process does not preclude others that have been proposed in the unusual evolution of El Niño SSTs in 2014, but it adds to the list a forcing mechanism external to the Pacific basin.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 NOAA/PMEL, Seattle, Washington, USA; Atmospheric Sciences and Global Change Division, PNNL, Richland, Washington, USA
2 NOAA/PMEL, Seattle, Washington, USA