It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The interaction of high-power ultra-short lasers with materials offers fascinating wealth of transient phenomena which are in the core of novel scientific research. Deciphering its evolution is a complicated task that strongly depends on the details of the early phase of the interaction, which acts as complex initial conditions. The entire process, moreover, is difficult to probe since it develops close to target on the sub-picosecond timescale and ends after some picoseconds. Here we present experimental results related to the fields and charges generated by the interaction of an ultra-short high-intensity laser with metallic targets. The temporal evolution of the interaction is probed with a novel femtosecond resolution diagnostics that enables the differentiation of the contribution by the high-energy forerunner electrons and the radiated electromagnetic pulses generated by the currents of the remaining charges on the target surface. Our results provide a snapshot of huge pulses, up to 0.6 teravolt per meter, emitted with multi-megaelectronvolt electron bunches with sub-picosecond duration and are able to explore the processes involved in laser-matter interactions at the femtosecond timescale.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Laboratori Nazionali di Frascati, Frascati, Italy
2 Racah Institute of Physics, Hebrew University, Jerusalem, Israel
3 University of Rome Tor Vergata and INFN, Rome, Italy
4 Laboratori Nazionali di Frascati, Frascati, Italy; Istituto Superior Tecnico de Lisboa, Lisbon, Portugal
5 University of Rome Sapienza, Rome, Italy
6 Laboratori Nazionali di Frascati, Frascati, Italy; Racah Institute of Physics, Hebrew University, Jerusalem, Israel