Full text

Turn on search term navigation

© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Environmental unpredictability is known to result in the evolution of bet‐hedging traits. Variable dormancy enhances survival through harsh conditions, and is widely cited as a diversification bet‐hedging trait. The floating aquatic plant, Spirodela polyrhiza (Greater Duckweed), provides an opportunity to study diversification because although partially reliable seasonal cues exist, its growing season is subject to an unpredictable and literally “hard” termination when the surface water freezes, and overwinter survival depends on a switch from production of normal daughter fronds to production of dense, sinking “turions” prior to freeze‐over. The problem for S. polyrhiza is that diversified dormancy behavior must be generated among clonally produced, genetically identical offspring. Variation in phenology has been observed in the field, but its sources are unknown. Here, we investigate sources of phenological variation in turion production, and test the hypothesis that diversification in turion phenology is generated within genetic lineages through effects of parental birth order. As expected, phenotypic plasticity to temperature is expressed along a thermal gradient; more interestingly, parental birth order was found to have a significant and strong effect on turion phenology: Turions are produced earlier by late birth‐order parents. These results hold regardless of whether turion phenology is measured as first turion birth order, time to first turion, or turion frequency. This study addresses a question of current interest on potential mechanisms generating diversification, and suggests that consistent phenotypic differences across birth orders generate life history variation.

Details

Title
Aberrant clones: Birth order generates life history diversity in Greater Duckweed, Spirodela polyrhiza
Author
Mejbel, Hebah S 1   VIAFID ORCID Logo  ; Simons, Andrew M 1 

 Department of Biology, Carleton University, Ottawa, Canada 
Pages
2021-2031
Section
ORIGINAL RESEARCH
Publication year
2018
Publication date
Feb 2018
Publisher
John Wiley & Sons, Inc.
e-ISSN
20457758
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2007130351
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.