Abstract

The porous structure and mass transport characteristics of disordered silicate porous media were investigated via a geometry based analysis of water confined in the pores. Disordered silicate porous media were constructed to mimic the dissolution behavior of an alkali aluminoborosilicate glass, i.e., soluble Na and B were removed from the bulk glass, and then water molecules and Na were introduced into the pores to provide a complex porous structure filled with water. This modelling approach revealed large surface areas of disordered porous media. In addition, a number of isolated water molecules were observed in the pores, despite accessible porous connectivity. As the fraction of mobile water was approximately 1%, the main water dynamics corresponded to vibrational motion in a confined space. This significantly reduced water mobility was due to strong hydrogen-bonding water-surface interactions resulting from the large surface area. This original approach provides a method for predicting the porous structure and water transport characteristics of disordered silicate porous media.

Details

Title
Molecular Dynamics Simulation of Water Confinement in Disordered Aluminosilicate Subnanopores
Author
Ohkubo, Takahiro 1 ; Gin, Stéphane 2 ; Collin, Marie 2 ; Iwadate, Yasuhiko 1 

 Graduate School of Engineering, Chiba University, Chiba, Japan 
 CEA DEN DE2D SEVT, Laboratoire d’étude du Comportement à Long Terme, Bagnols-sur-Céze, France 
Pages
1-11
Publication year
2018
Publication date
Feb 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2009220766
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.