Full Text

Turn on search term navigation

© 2018 Masumoto, Matsuyama. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metabolic engineering focuses on rewriting the metabolism of cells to enhance native products or endow cells with the ability to produce new products. This engineering has the potential for wide-range application, including the production of fuels, chemicals, foods and pharmaceuticals. Glycolysis manages the levels of various secondary metabolites by controlling the supply of glycolytic metabolites. Metabolic reprogramming of glycolysis is expected to cause an increase in the secondary metabolites of interest. In this study, we constructed a budding yeast strain harboring the combination of triple sirtuin gene deletion (hst3hst4sir2∆) and interruption of gluconeogenesis by the deletion of the FBP1 gene encoding fructose-1,6-bisphosphatase (fbp1∆). hst3hst4sir2fbp1∆ cells harbored active glycolysis with high glucose consumption and active ethanol productivity. Using capillary electrophoresis–time-of-flight mass spectrometry (CE–TOF/MS) analysis, hst3hst4sir2fbp1∆ cells accumulated not only glycolytic metabolites but also secondary metabolites, including nucleotides that were synthesized throughout the pentose phosphate (PP) pathway, although various amino acids remained at low levels. Using the stable isotope labeling assay for metabolites, we confirmed that hst3hst4sir2fbp1∆ cells directed the metabolic fluxes of glycolytic metabolites into the PP pathway. Thus, the deletion of three sirtuin genes (HST3, HST4 and SIR2) and the FBP1 gene can allow metabolic reprogramming to increase glycolytic metabolites and several secondary metabolites except for several amino acids.

Details

Title
The combination of NAD+-dependent deacetylase gene deletion and the interruption of gluconeogenesis causes increased glucose metabolism in budding yeast
Author
Masumoto, Hiroshi; Matsuyama, Shigeru
First page
e0194942
Section
Research Article
Publication year
2018
Publication date
Mar 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2018656112
Copyright
© 2018 Masumoto, Matsuyama. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.