It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
There have been several long-standing problems of cold field emission sources for electron microscopy and lithography that have prevented their widespread use, such as their inherent ultrahigh vacuum condition requirement (<10–9 torr), relatively poor current stability and rapid emission decay. This paper presents a cold field emission electron source which overcomes these problems based upon using a graphene-coated nickel point cathode. Preliminary experiments demonstrate that it provides stable emission for relatively large tip diameters (micron sizes), can operate in high vacuum conditions (>10−8 torr) and has an ultralow work function value of 1.10 ± 0.07 eV. It has an estimated reduced brightness value of 1.46 × 109 A m−2 sr−1 V−1 for cathode tip-radius of 170 nm and the measured energy spread ranges from 0.246 eV to 0.420 eV for a tip radii range of 260 nm to 500 nm, which is comparable to state-of-the-art conventional cold field emission sources.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; Engineering Science Programme, National University of Singapore, Singapore, Singapore