Received Sep 29, 2017; Accepted Jan 16, 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction: Quaternions and Vector-Parameters
The Clifford algebra of quaternions is known to be intimately related to the rotation group in and one way to see it is via the standard spin covering map that is topologically a projection from the unit sphere . The basis of bivectors in is spanned by three units satisfyingwhere denotes the identity element, so one can express each quaternion in the formHence, as a linear space, may obviously be identified with by introducing coordinates as shown above. At the same time, quaternions have a specific Clifford multiplication rule that can be expressed in the above notation aswhere and stand for the dot and cross products in , respectively. Just like in the case of complex numbers, Clifford conjugation in is given by sign inversion of the imaginary (vector) part : that is, , and since there are no zero divisors, the quaternion norm defined as yields the inverse of every nonzero element