It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative organism, strongly associated with aggressive forms of periodontitis. An important virulence property of A. actinomycetemcomitans is its ability to form tenacious biofilms that can attach to abiotic as well as biotic surfaces. The histone-like (H-NS) family of nucleoid-structuring proteins act as transcriptional silencers in many Gram-negative bacteria. To evaluate the role of H-NS in A. actinomycetemcomitans, hns mutant derivatives of serotype a strain D7S were generated. Characteristics of the hns mutant phenotype included shorter and fewer pili, and substantially lower monospecies biofilm formation relative to the wild type. Furthermore, the D7S hns mutant exhibited significantly reduced growth within a seven-species oral biofilm model. However, no apparent difference was observed regarding the numbers and proportions of the remaining six species regardless of being co-cultivated with D7S hns or its parental strain. Proteomics analysis of the strains grown in monocultures confirmed the role of H-NS as a repressor of gene expression in A. actinomycetemcomitans. Interestingly, proteomics analysis of the multispecies biofilms indicated that the A. actinomycetemcomitans wild type and hns mutant imposed different regulatory effects on the pattern of protein expression in the other species, i.e., mainly Streptococcus spp., Fusobacterium nucleatum, and Veillonella dispar. Gene ontology analysis revealed that a large portion of the differentially regulated proteins was related to translational activity. Taken together, our data suggest that, apart from being a negative regulator of protein expression in A. actinomycetemcomitans, H-NS promotes biofilm formation and may be an important factor for survival of this species within a multispecies biofilm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Solnavägen, Sweden; Division of Oral Microbiology and Immunology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
2 Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Solnavägen, Sweden
3 Division of Oral Microbiology and Immunology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
4 Functional Genomics Center, ETH Zürich and University of Zürich, Zürich, Switzerland
5 Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden