Abstract

AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.

Details

Title
Gamma-ray spectroscopy measurements and simulations for uranium mining
Author
Marchais, T; Pérot, B; Carasco, C; P-G Allinei; Chaussonnet, P; J-L Ma; Toubon, H
Section
Nuclear fuel cycle
Publication year
2018
Publication date
2018
Publisher
EDP Sciences
ISSN
21016275
e-ISSN
2100014X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2050743604
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.