Content area

Abstract

The Swampland Distance Conjecture claims that effective theories derived from a consistent theory of quantum gravity only have a finite range of validity. This will imply drastic consequences for string theory model building. The refined version of this conjecture says that this range is of the order of the naturally built in scale, namely the Planck scale. It is investigated whether the Refined Swampland Distance Conjecture is consistent with proper field distances arising in the well understood moduli spaces of Calabi-Yau compactification. Investigating in particular the non-geometric phases of Kähler moduli spaces of dimension h11 ∈ {1, 2, 101}, we always find proper field distances that are smaller than the Planck-length.

Details

Title
The refined Swampland Distance Conjecture in Calabi-Yau moduli spaces
Author
Blumenhagen, Ralph 1 ; Klaewer, Daniel 1 ; Schlechter, Lorenz 2 ; Wolf, Florian 1 

 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany 
 Fakultät für Physik, Technische Universität München, Garching, Germany; Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany 
Pages
1-63
Publication year
2018
Publication date
Jun 2018
Publisher
Springer Nature B.V.
e-ISSN
10298479
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2053261909
Copyright
Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.