Full text

Turn on search term navigation

© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Genetic interaction between domesticated escapees and wild conspecifics represents a persistent challenge to an environmentally sustainable Atlantic salmon aquaculture industry. We used a recently developed eco‐genetic model (IBSEM) to investigate potential changes in a wild salmon population subject to spawning intrusion from domesticated escapees. At low intrusion levels (5%–10% escapees), phenotypic and demographic characteristics of the recipient wild population only displayed weak changes over 50 years and only at high intrusion levels (30%–50% escapees) were clear changes visible in this period. Our modeling also revealed that genetic changes in phenotypic and demographic characteristics were greater in situations where strayers originating from a neighboring wild population were domestication‐admixed and changed in parallel with the focal wild population, as opposed to nonadmixed. While recovery in the phenotypic and demographic characteristics was observed in many instances after domesticated salmon intrusion was halted, in the most extreme intrusion scenario, the population went extinct. Based upon results from these simulations, together with existing knowledge, we suggest that a combination of reduced spawning success of domesticated escapees, natural selection purging maladapted phenotypes/genotypes from the wild population, and phenotypic plasticity, buffer the rate and magnitude of change in phenotypic and demographic characteristics of wild populations subject to spawning intrusion of domesticated escapees. The results of our simulations also suggest that under specific conditions, natural straying among wild populations may buffer genetic changes in phenotypic and demographic characteristics resulting from introgression of domesticated escapees and that variation in straying in time and space may contribute to observed differences in domestication‐driven introgression among native populations.

Details

Title
Modeling fitness changes in wild Atlantic salmon populations faced by spawning intrusion of domesticated escapees
Author
Castellani, Marco 1 ; Heino, Mikko 2   VIAFID ORCID Logo  ; Gilbey, John 3 ; Araki, Hitoshi 4   VIAFID ORCID Logo  ; Svåsand, Terje 5 ; Glover, Kevin A 6   VIAFID ORCID Logo 

 Department of Engineering, University of Birmingham, Birmingham, UK 
 Department of Biological Sciences, University of Bergen, Bergen, Norway; Institute of Marine Research, Bergen, Norway; International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria 
 Freshwater Fisheries Laboratory, Marine Scotland, Pitlochry, UK 
 Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan 
 Institute of Marine Research, Bergen, Norway 
 Department of Biological Sciences, University of Bergen, Bergen, Norway; Institute of Marine Research, Bergen, Norway 
Pages
1010-1025
Section
ORIGINAL ARTICLES
Publication year
2018
Publication date
Jul 2018
Publisher
John Wiley & Sons, Inc.
e-ISSN
17524571
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2054169254
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.