Abstract

Alkali atoms have unusually low ionization energies because their electronic structures have an excess electron beyond that of a filled electronic shell. Quantum states in metallic clusters are grouped into shells similar to those in atoms, and clusters with an excess electron beyond a closed electronic may also exhibit alkali character. This approach based on shell-filling is the way alkali species are formed as explained by the periodic table. We demonstrate that the ionization energy of metallic clusters with both filled and unfilled electronic shells can be substantially lowered by attaching ligands. The ligands form charge transfer complexes where the electronic spectrum is lifted via crystal field like effect. We demonstrate that the effect works for the weakly bound ligand, N-ethyl-2-pyrrolidone (EP = C6H11NO), and that the effect leads to a dramatic lowering of the ionization energy independent of the shell occupancy of the cluster.

Details

Title
Strong lowering of ionization energy of metallic clusters by organic ligands without changing shell filling
Author
Chauhan, Vikas 1 ; Reber, Arthur C 1   VIAFID ORCID Logo  ; Khanna, Shiv N 1   VIAFID ORCID Logo 

 Department of Physics, Virginia Commonwealth University, Richmond, VA, USA 
Pages
1-7
Publication year
2018
Publication date
Jun 2018
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2055931547
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.