Abstract
Background
Population stratification and cryptic relationships have been the main sources of excessive false-positives and false-negatives in population-based association studies. Many methods have been developed to model these confounding factors and minimize their impact on the results of genome-wide association studies. In most of these methods, a two-stage approach is applied where: (1) methods are used to determine if there is a population structure in the sample dataset and (2) the effects of population structure are corrected either by modeling it or by running a separate analysis within each sub-population. The objective of this study was to evaluate the impact of population structure on the accuracy and power of genome-wide association studies using a Bayesian multiple regression method.
Methods
We conducted a genome-wide association study in a stochastically simulated admixed population. The genome was composed of six chromosomes, each with 1000 markers. Fifteen segregating quantitative trait loci contributed to the genetic variation of a quantitative trait with heritability of 0.30. The impact of genetic relationships and breed composition (BC) on three analysis methods were evaluated: single marker simple regression (SMR), single marker mixed linear model (MLM) and Bayesian multiple-regression analysis (BMR). Each method was fitted with and without BC. Accuracy, power, false-positive rate and the positive predictive value of each method were calculated and used for comparison.
Results
SMR and BMR, both without BC, were ranked as the worst and the best performing approaches, respectively. Our results showed that, while explicit modeling of genetic relationships and BC is essential for models SMR and MLM, BMR can disregard them and yet result in a higher power without compromising its false-positive rate.
Conclusions
This study showed that the Bayesian multiple-regression analysis is robust to population structure and to relationships among study subjects and performs better than a single marker mixed linear model approach.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer






