Abstract

We introduce the concept of Potential of Mean Force, PMF, as a way to implement upscaling modeling from the nano-scale to micron-scale. A PMF is a free energy function representing in an effective way the interactions between objects (cement hydrates, clay platelets, etc.) at thermodynamics conditions. The PMF is therefore the key piece of information allowing to coarse-grained Physical-Chemistry information in a meso-scale model formulation. The use of PMF offers a huge computational advantage as it allows a straight up-scaling to the meso-scale while keeping essential interactions information that are the hallmark of Physical-Chemistry processes. Such a coarse-grained modeling integrates atomistic response into inter-particle potentials that fully propagate molecular scale information all the way to the meso-scale.

Details

Title
The Potential of Mean Force concept for bridging (length and time) scales in the modeling of complex porous materials
Author
Ioannidou, Katerina; Carrier, Benoit; Vandamme, Matthieu; Pellenq, Roland
Section
Review papers
Publication year
2017
Publication date
2017
Publisher
EDP Sciences
ISSN
21016275
e-ISSN
2100014X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2057770941
Copyright
© 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.