Abstract

The self-consistent mean-field Hartree–Fock (HF) theory, both static and time-dependent (TDHF) versions, is used to study static and dynamic properties of fusion reactions between even 40–54Ca isotopes and 116Sn. The bare nucleus-nucleus potential, calculated with the frozen HF approach, is affected by the groundstate density of the nuclei. However, once dynamical effects are included, as in TDHF, the static effects on the barrier are essentially washed out. Dynamic properties of the nuclei, including low-lying vibrational modes, are calculated with TDHF and selectively used in coupled-channels calculations to identify which modes have the most effect on the TDHF fusion threshold. Vibrations cannot fully explain the difference between the static HF and TDHF fusion barriers trend so other dynamical effects such as transfer are considered.

Details

Title
Nuclear structure effects on heavy-ion reactions with microscopic theory
Author
Vo-Phuoc, K; Simenel, C; Simpson, E C
Section
Nuclear Reactions
Publication year
2016
Publication date
2016
Publisher
EDP Sciences
ISSN
21016275
e-ISSN
2100014X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2057790782
Copyright
© 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.