Content area
Abstract
grᅟ
We report on the successful preparation of Bi-doped n-type polycrystalline SnSe by hot-press method. We observed anisotropic transport properties due to the (h00) preferred orientation of grains along the pressing direction. The electrical conductivity perpendicular to the pressing direction is higher than that parallel to the pressing direction, 12.85 and 6.46 S cm−1 at 773 K for SnSe:Bi 8% sample, respectively, while thermal conductivity perpendicular to the pressing direction is higher than that parallel to the pressing direction, 0.81 and 0.60 W m−1 K−1 at 773 K for SnSe:Bi 8% sample, respectively. We observed a bipolar conducting mechanism in our samples leading to n- to p-type transition, whose transition temperature increases with Bi concentration. Our work addressed a possibility to dope polycrystalline SnSe by a hot-pressing process, which may be applied to module applications.
Highlights
1.
We have successfully achieved Bi-doped n-type polycrystalline SnSe by the hot-press method.
2.We observed anisotropic transport properties due to the [h00] preferred orientation of grains along pressing direction.
3.We observed a bipolar conducting mechanism in our samples leading to n- to p-type transition.
Details
1 Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan, Republic of Korea
2 Thermoelectric Conversion Research Center, Creative and Fundamental Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, Republic of Korea
3 Materials Genome Center, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
4 Phenikaa Research and Technology Institute, A&A Green Phoenix Group, Hanoi, Vietnam





