It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Synthetic biology is an emerging engineering discipline that aims at synthesising logical circuits into cells to accomplish new functions. Despite a thriving community and some notable successes, the basic task of assembling predictable gene circuits is still a key challenge. Mathematical models are uniquely suited to help solve this issue. Yet in biology they are perceived as expensive and laborious to obtain because low-information experiments have often been used to infer model parameters. How much additional information can be gained using optimally designed experiments? To tackle this question we consider a building block in Synthetic Biology, an inducible promoter in yeast S. cerevisiae. Using in vivo data we re-fit a mathematical model for such a system; we then compare in silico the quality of the parameter estimates when model calibration is done using typical (e.g. step inputs) and optimally designed experiments. We find that Optimal Experimental Design leads to 70% improvement in the predictive ability of the inferred models. We conclude providing suggestions on how optimally designed experiments can be implemented in vivo.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer