It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Comprehensive two dimensional gas chromatography-mass spectrometry is a powerful method for analyzing complex mixtures of volatile compounds. This method produces a large amount of raw data that requires downstream processing to align signals of interest (peaks) across multiple samples and match peak characteristics to reference standard libraries prior to downstream statistical analysis. To address the paucity of applications addressing this need, we have developed an R package that implements retention time and mass spectra similarity threshold-free alignments, seamlessly integrates retention time standards for universally reproducible alignments, performs common ion filtering, and provides compatibility with multiple peak quantification methods. We demonstrate the packages utility on a controlled mix of metabolite standards separated under variable chromatography conditions and data generated from cell lines.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer