Abstract

Background. The evolution of gene body methylation (gbM), its origins and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins.Results. CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2 and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns.Conclusions. The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.

Details

Title
The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants
Author
Bewick, Adam J; Niederhuth, Chad E; Ji, Lexiang; Rohr, Nicholas A; Griffin, Patrick T; Leebens-Mack, Jim; Schmitz, Robert J
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2017
Publication date
Jan 31, 2017
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
2070158721
Copyright
�� 2017. This article is published under http://creativecommons.org/licenses/by/4.0/ (���the License���). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.